

Enseignants: Dovi, Huruguen, Burmeister

Algèbre linéaire - CMS 10 novembre 2022 Durée : 105 minutes

Contrôle 1

SCIPER: XXXXXX

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé recto-verso, il contient 16 pages, les dernières pouvant être vides. Ne pas dégrafer.

- Posez votre carte d'étudiant.e sur la table.
- Aucun document n'est autorisé.
- L'utilisation d'une calculatrice et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à choix unique, on comptera:
 - les points indiqués si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - 0 point si la réponse est incorrecte.
- Utilisez un **stylo** à encre **noire ou bleu foncé** et effacez proprement avec du **correcteur blanc** si nécessaire.
- Les dessins peuvent être faits au crayon.
- Répondez dans l'espace prévu (aucune feuille supplémentaire ne sera fournie).
- Les brouillons ne sont pas à rendre: ils ne seront pas corrigés.

Respectez les consignes suivantes Observe this guidelines Beachten Sie bitte die unten stehenden Richtlinien			
choisir une réponse select an answer Antwort auswählen	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen	Corriger une réponse Correct an answer Antwort korrigieren	
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte			

Première partie, questions à choix unique

Pour chaque énoncé proposé, plusieurs questions sont posées. Pour chaque question, marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Enoncé

On donne un ensemble fini E et un sous-ensemble $A\subset E$ vérifiant :

$$Card(E) = 37$$
 et $Card(A) = 13$.

Question 1 (2 points) Le nombre $78\binom{24}{15}$ est égal au nombre de sous-ensembles C de E tels que		
Question 2 (2 points) Combien E possède-t-il de sous-ensembles à 19 éléments ?		

Question 3 (2 points)

Combien existe-t-il de sous-ensembles B de E tels que $\operatorname{Card}(B) = 5$ et $B \subset A$?

2817
2187
1287
1827

On définit S_n comme

$$S_n = \sum_{k=1}^n k! \quad \forall \, n \in \mathbb{N}^*$$

et on considère la proposition

$$T: \forall n \in \mathbb{N}^* \quad S_n \le (n+1)!$$

Question 4 (2 points)

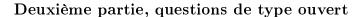
En calculant S_1 , S_2 , S_3 et S_4 , indiquer la bonne affirmation parmi celles données ci-dessous.

- $S_n = \frac{n(n+1)}{2} \text{ pour } n = 1, 2, 3, 4$
- $S_n = 3^{n-1} \text{ pour } n = 1, 2, 3, 4$
- $S_n = n! + 3^{n-2} \text{ pour } n = 2, 3, 4$

Question 5 (2 points)

Pour prouver la proposition T par récurrence, on commence par vérifier que $S_1 \leq 2!$ puis

- \square on montre que $\left[\forall n \in \mathbb{N}^* \ S_{n+1} \leq (n+2)!\right]$ en admettant que $\left[S_n \leq (n+1)!\right]$
- \square on montre $\forall n \in \mathbb{N}^*$ que $\left[S_{n+1} \leq (n+2)!\right]$ en admettant que $\left[S_n \leq (n+1)!\right]$
- $\$ on montre que $\left[S_{n+1} \leq (n+2)!\right]$ en admettant que $\left[\forall n \in \mathbb{N}^* \ S_n \leq (n+1)!\right]$



Répondre dans l'espace dédié. Votre réponse doit être soigneusement justifiée, toutes les étapes de votre raisonnement doivent figurer dans votre réponse. Laisser libres les cases à cocher: elles sont réservées au correcteur.

Question 6: Cette question est notée sur 6 points.

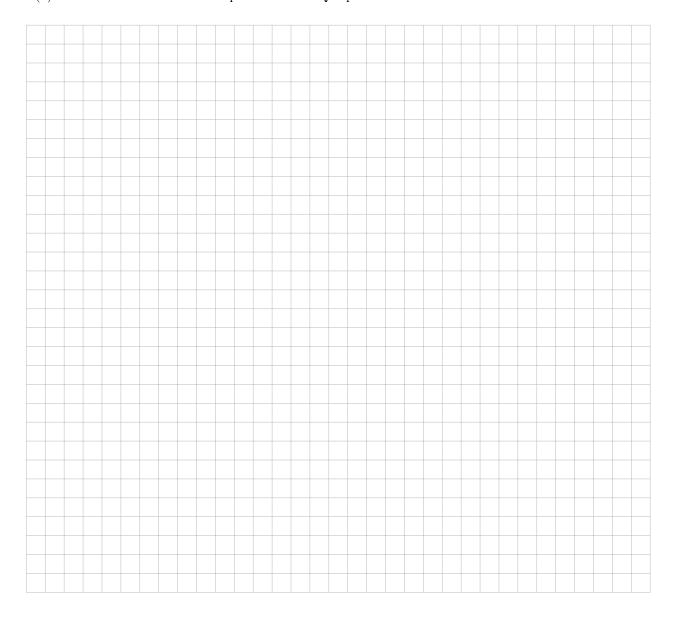
Soient les ensembles finis $E = \{a, b, c, d\}$ et $F = \{\alpha, \beta, \gamma\}$ et \mathcal{F} , l'ensemble des applications de E dans F. On considère les propositions

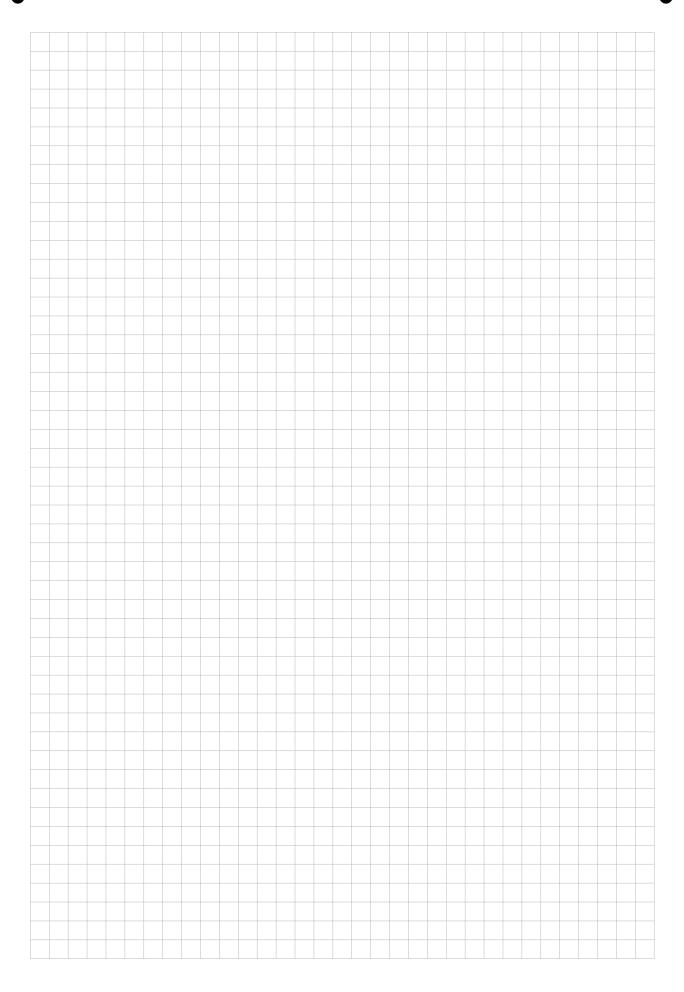
$$T: \quad \forall f \in \mathcal{F} \text{ et } A, B \subset E, \quad A \cap B = \emptyset \Rightarrow f(A) \cap f(B) = \emptyset$$

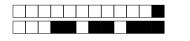
et

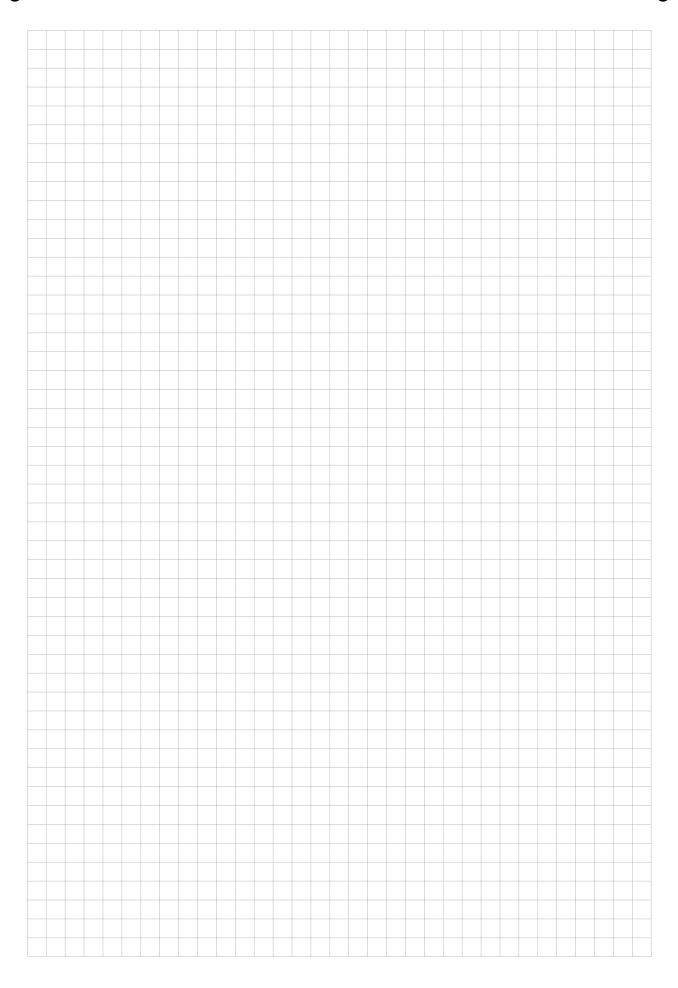
$$S: \quad \forall f \in \mathcal{F} \text{ et } C, D \subset F \quad C \cap D = \emptyset \ \Rightarrow \ f^{-1}(C) \cap f^{-1}(D) = \emptyset.$$

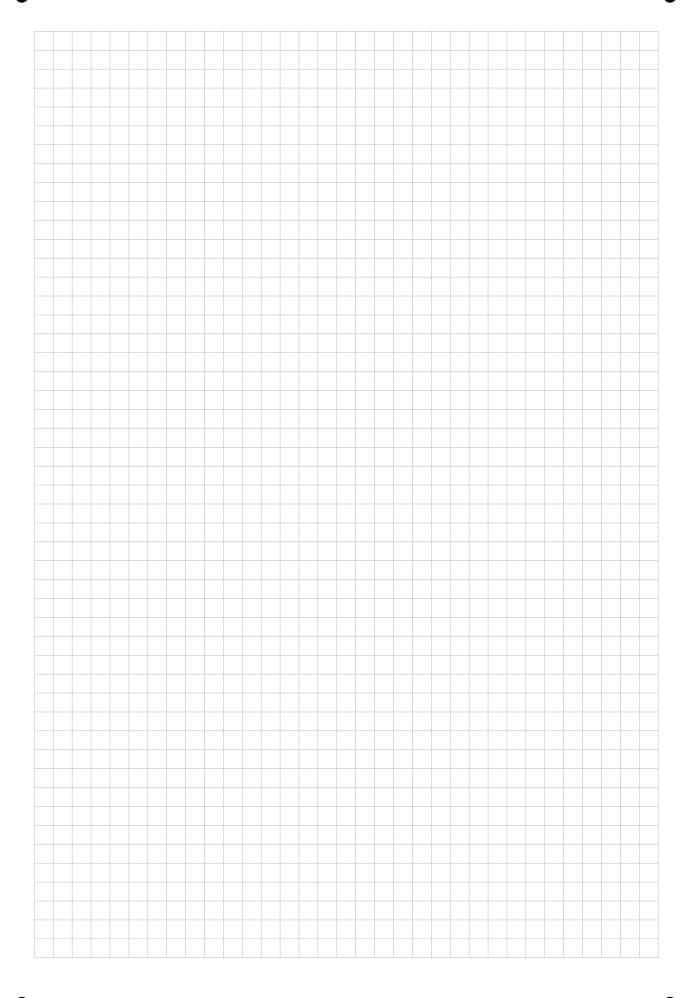
- (a) Ecrire et démontrer la négation nonT de T.
- (b) Ecrire et démontrer la contraposée K de S. Que peut-on dire sur S: est-elle vraie ou non?

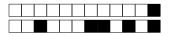










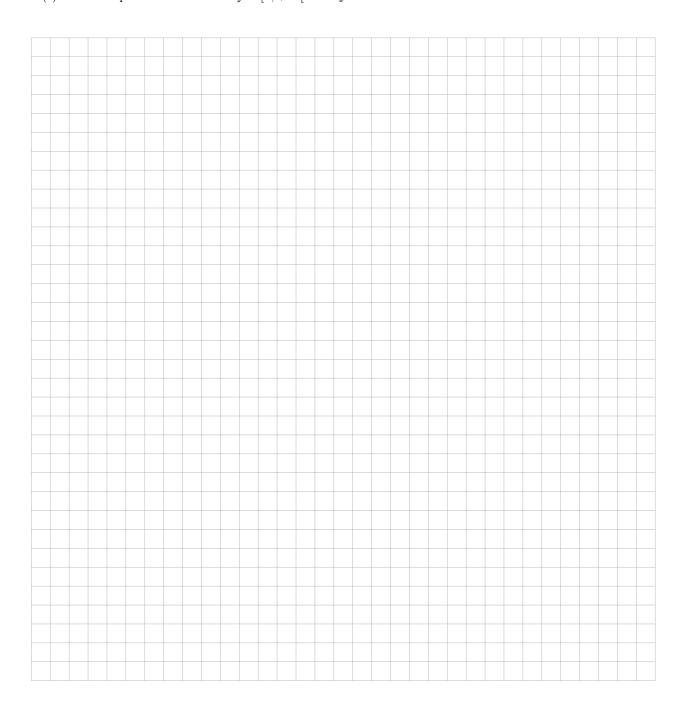


Question 7: Cette question est notée sur 6 points.

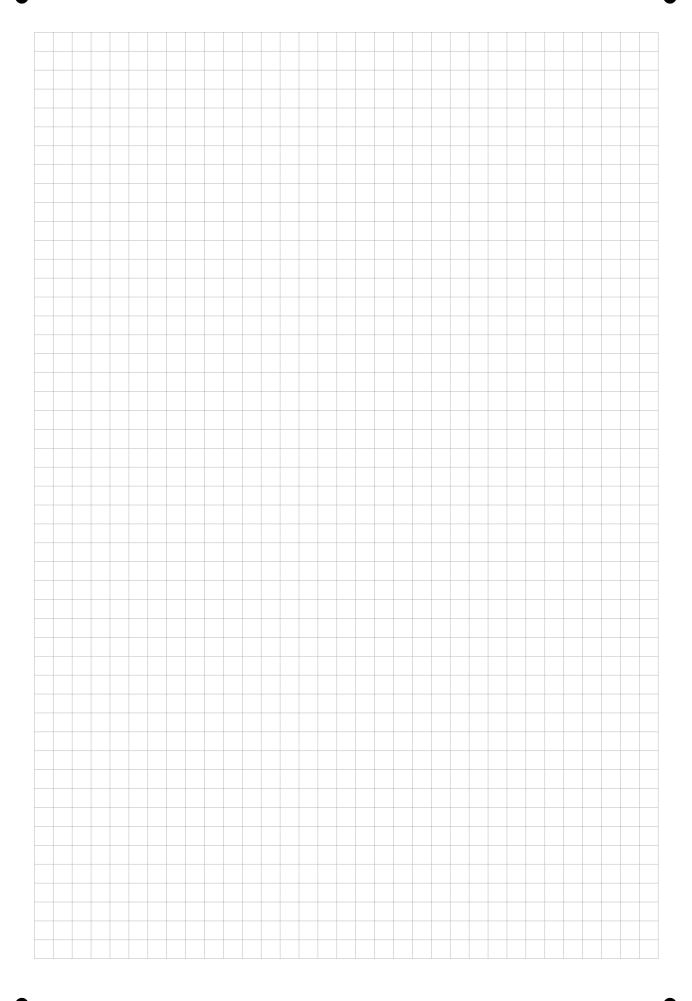
On considère l'application suivante:

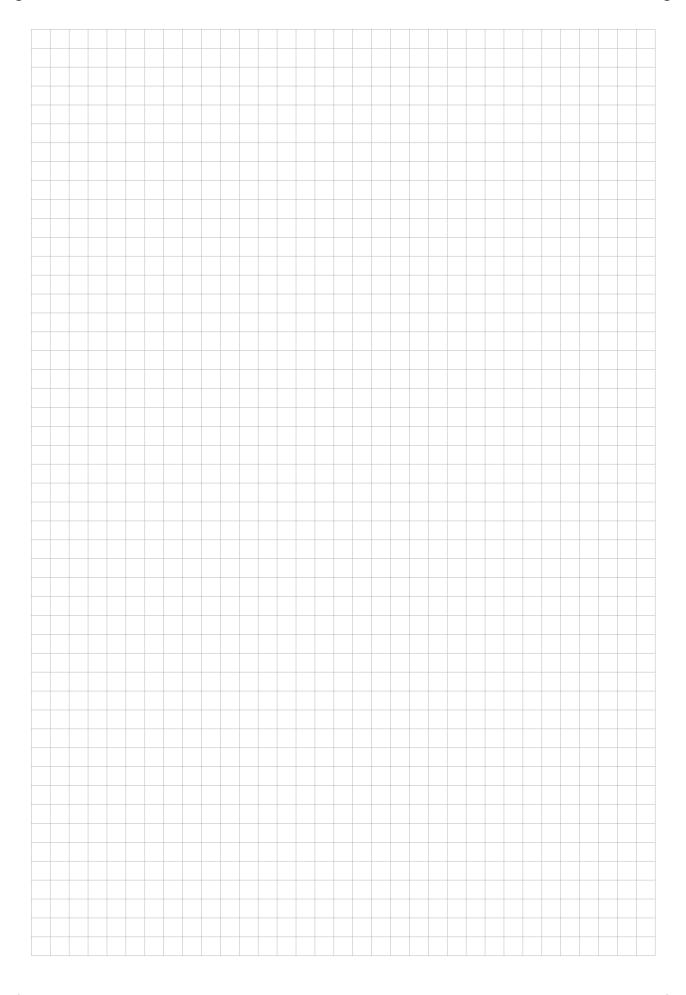
$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad x \longrightarrow \frac{x}{x^2 + x + 1}$$

- (a) Pour tout $x \in \mathbb{R}$, déterminer l'ensemble $f^{-1}(\{f(x)\})$. Combien possède-t-il d'éléments?
- (b) L'application f est-elle injective? Justifier rigoureusement votre réponse.
- (c) Montrer que la restriction de f à $[1, +\infty[$ est injective.

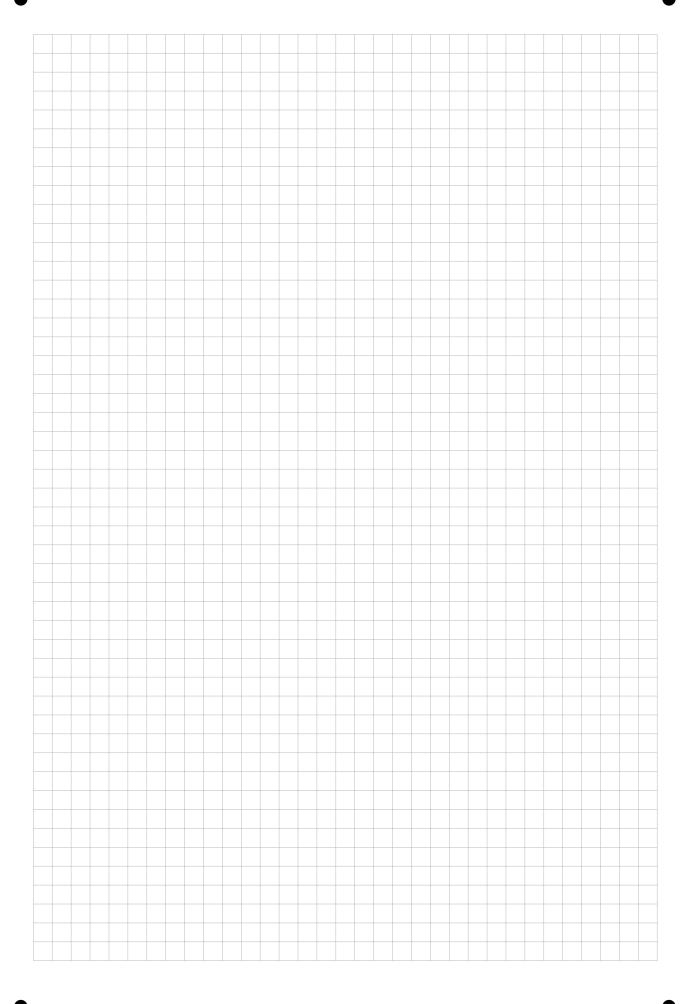












On donne l'application :

$$\begin{array}{cccc} f: & \mathbb{N}^2 & \longrightarrow & \mathbb{N} \\ & (x,y) & \longmapsto & xy^2 + 1 \,. \end{array}$$

- (a) Déterminer $f(\{(0,0),(0,1),(1,1)\})$.
- (b) Déterminer $f^{-1}(\{3\})$ après avoir écrit sa définition.
- (c) Montrer que f n'est pas surjective. Justifier rigoureusement votre réponse.
- (d) Déterminer le sous-ensemble $\operatorname{Im} f$ de \mathbb{N} .
- (e) En justifiant votre réponse, donner un sous-ensemble A de \mathbb{N}^2 possédant 4 éléments et tel que:

$$f(A) = \{13, 37\}.$$

